Giải thích các bước giải:
P=($\frac{2x+1}{(√x-1)(x+√x+1)}$+$\frac{√x(√x-1)}{(√x-1)(x+√x+1)}$ ).($\frac{(1+√x)(1-√x+x)}{√x+1}$ -√x)
P=($\frac{2x+1+x-√x}{(√x-1)(x+√x+1)}$).(1-√x+x-√x) P=$\frac{3x-√x+1}{(√x-1)(x+√x+1)}$. 1+x-2√x P=$\frac{(3x-√x+1)(x-2√x+1)}{(√x-1)(x+√x+1)}$ P=$\frac{(3x-√x+1)(√x-1)^{2}}{(√x-1)(x+√x+1)}$ P=$\frac{(3x-√x+1)(√x-1)}{(x+√x+1)}$
2) $\left \{ {{3x^{2}-2xy=160} \atop {x^{2}-3xy-2y^{2}=8}} \right.$
<=>$\left \{ {{3x^{2}-2xy=160} \atop {3x^{2}-9xy-6y^{2}=24}} \right.$
<=>$\left \{ {{3x^{2}=160+2xy} \atop {3x^{2}=24+9xy+6y^{2}}} \right.$
<=>160+2xy=24+9xy+6$y^{2}$
<=>7xy+6$y^{2}$ -136=0
<=>(3xy+2$y^{2}$+8)+4xy+$y^{2}$ -144
<=>$x^{2}$+4xy+$y^{2}$ =144
<=>$(x+2y)^{2}$=144
<=>x+2y=±12
<=>\(\left[ \begin{array}{l}x+2y=12\\x+2y=-12\end{array} \right.\)
<=>\(\left[ \begin{array}{l}x=12−2y\\x=−12−2y\end{array} \right.\)
với x= 12 -2y
ta có: 3($12-2y)^{2}$ (12−2y)y=160
=>y=2
=>x=12-2.2=8
với x =-12-2y
ta có: 3(−12−2y)2−2(−12−2y)y=160
=>y=-2
=>x=-12+2.2=8