Nhân từng vế bất đẳng thức ta được: (abc)^2=36abc
+) Nếu 1 trong các số a,b,c bằng 0 thì 2 số còn lại cũng bằng 0
+) Nếu 1 trong các số a,b,c khác 0 thì chia 2 vế cho abc ta đượcabc=36
+) Từ abc=36 và ab=c ta được c^2=36 nên c=6; c=-6
+) Từ abc=36 và bc=4a ta được 4a^2=36 nên a=3; a=-3
+) Từ abc=36 và ab=9b ta được 9b^2=36 nên b=2; b=-2
-) Nếu c=6 thì a và b cùng dấu nên a=3, b=2 hoặc a=-3, b=-2
-) Nếu c=-6 thì a và b trái dấu nên a=3, b=-2 hoặc a=-3, b=2
Tóm lại có 5 bộ số (a,b,c) thoả mãn bài toán
(0,0,0); (3,2,6); (-3,-2,6); (3,-2,-6); (-3,2,-6)
XIN HAY NHẤT !!!!!!!!!!