a, $\sqrt{2x^2-6x}$ xác định khi $2x^2-6x\ge 0$
$⇔2x(x-3)\ge 0$
$⇔\left[ \begin{array}{l}\begin{cases}2x>0\\x-3>0\end{cases}\\\begin{cases}2x<0\\x-3<0\end{cases}\end{array} \right.$
$⇔\left[ \begin{array}{l}\begin{cases}x>0\\x>3\end{cases}\\\begin{cases}x<0\\x<3\end{cases}\end{array} \right.$
$⇔\left[ \begin{array}{l}x>3\\x<0\end{array} \right.$
Vậy $x<0$ hoặc $x>3$ thì căn thức xác định
b, $\sqrt{\dfrac{1}{3x-2}}$ xác định khi $3x-2>0$
$⇔3x>2$
$⇔x>\dfrac23$
Vậy $x>\dfrac23$ thì căn thức xác định