Đặt:
`A = 4 + 4^2 + 4^3 + ... + 4^n`
`4A = 4 . (4 + 4^2 + 4^3 + ... + 4^n)`
`4A = 4^2 + 4^3 + 4^4 + ... + 4^(n + 1)`
`4A - A = (4^3 + 4^3 + 4^4 + ... + 4^(n + 1)) - (4 + 4^2 + 4^3 + ... + 4^n)`
`3A = 4^2 + 4^3 + 4^4 + ... + 4^(n + 1) - 4 - 4^2 - 4^3 - ... - 4^n`
`3A = 4^(n + 1) - 4`
`A = (4^(n + 1) - 4)/3`
Vậy `4 + 4^2 + 4^3 + ... + 4^n = (4^(n + 1) - 4)/3`