Đáp án:
$\begin{array}{l}
B1)\\
1)\dfrac{{11}}{{24}} - \dfrac{5}{{41}} + \dfrac{{13}}{{24}} + 0,5 - \dfrac{{36}}{{41}}\\
= \dfrac{{11}}{{24}} + \dfrac{{13}}{{24}} - \left( {\dfrac{5}{{41}} + \dfrac{{36}}{{41}}} \right) + 0,5\\
= 1 - 1 + 0,5\\
= 0,5\\
2) - 12:{\left( {\dfrac{3}{4} - \dfrac{5}{6}} \right)^2}\\
= - 12:{\left( {\dfrac{{9 - 10}}{{12}}} \right)^2}\\
= - 12:{\left( {\dfrac{{ - 1}}{{12}}} \right)^2}\\
= - {12.12^2}\\
= - {12^3}\\
3)\dfrac{{{2^4}{{.2}^6}}}{{{{\left( {{2^5}} \right)}^2}}} - \dfrac{{{2^5}{{.15}^3}}}{{{6^3}{{.10}^2}}}\\
= \dfrac{{{2^{10}}}}{{{2^{10}}}} - \dfrac{{{2^5}{{.3}^3}{{.5}^3}}}{{{2^3}{{.3}^3}{{.2}^2}{{.5}^2}}}\\
= 1 - \dfrac{{{2^5}.5}}{{{2^5}}}\\
= 1 - 5\\
= - 4\\
4)23\dfrac{1}{4}.\dfrac{7}{5} - 13\dfrac{1}{4}:\dfrac{5}{7}\\
= 23\dfrac{1}{4}.\dfrac{7}{5} - 13\dfrac{1}{4}.\dfrac{7}{5}\\
= \left( {23\dfrac{1}{4} - 13\dfrac{1}{4}} \right).\dfrac{7}{5}\\
= 10.\dfrac{7}{5}\\
= 14\\
5)10\sqrt {0,01} .\sqrt {\dfrac{{16}}{9}} + 3\sqrt {49} - \dfrac{1}{6}.\sqrt 4 \\
= 10.0,1.\dfrac{4}{3} + 3.7 - \dfrac{1}{6}.2\\
= \dfrac{4}{3} + 21 - \dfrac{1}{3}\\
= 1 + 21\\
= 22\\
6)16\dfrac{2}{7}:\left( { - \dfrac{3}{5}} \right) + 28\dfrac{2}{7}:\dfrac{3}{5}\\
= \left( { - 16\dfrac{2}{7} + 28\dfrac{2}{7}} \right):\dfrac{3}{5}\\
= 12.\dfrac{5}{3}\\
= 20\\
B2)1)\dfrac{x}{{12}} - \dfrac{5}{6} = \dfrac{1}{{12}}\\
\Leftrightarrow \dfrac{x}{{12}} = \dfrac{1}{{12}} + \dfrac{5}{6} = \dfrac{{11}}{{12}}\\
\Leftrightarrow x = 11\\
Vậy\,x = 11\\
2)\dfrac{2}{3} - 1\dfrac{4}{{15}}.x = - \dfrac{3}{5}\\
\Leftrightarrow 1\dfrac{4}{{15}}.x = \dfrac{2}{3} + \dfrac{3}{5}\\
\Leftrightarrow \dfrac{{19}}{{15}}.x = \dfrac{{19}}{{15}}\\
\Leftrightarrow x = 1\\
Vậy\,x = 1\\
3) - {2^3} + 0,5.x = 1,5\\
\Leftrightarrow - 8 + 0,5.x = 1,5\\
\Leftrightarrow 0,5.x = 1,5 + 8\\
\Leftrightarrow 0,5x = 9,5\\
\Leftrightarrow x = 19\\
Vậy\,x = 19\\
4)\dfrac{{{{\left( { - 3} \right)}^x}}}{{81}} = - 27\\
\Leftrightarrow {\left( { - 3} \right)^x} = - 27.81\\
\Leftrightarrow {\left( { - 3} \right)^x} = {\left( { - 3} \right)^3}{.3^4} = {\left( { - 3} \right)^7}\\
\Leftrightarrow x = 7\\
Vậy\,x = 7\\
5)0,2 - ?? = 0\\
6){\left( {x - 1} \right)^2} = 25\\
\Leftrightarrow \left[ \begin{array}{l}
x - 1 = 5\\
x - 1 = - 5
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 6\\
x = - 4
\end{array} \right.\\
Vậy\,x = - 4;x = 6\\
7)\dfrac{x}{7} = \dfrac{y}{3} = \dfrac{{x - y}}{{7 - 3}} = \dfrac{{24}}{4} = 6\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 6.7 = 42\\
y = 6.3 = 18
\end{array} \right.\\
Vậy\,x = 42;y = 18\\
8)\dfrac{x}{5} = \dfrac{y}{7} = \dfrac{z}{2} = \dfrac{{y - x}}{{7 - 5}} = \dfrac{{48}}{2} = 24\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 24.5 = 120\\
y = 24.7 = 168\\
z = 24.2 = 48
\end{array} \right.\\
Vậy\,x = 120;y = 168;z = 48
\end{array}$