Đáp án:
1) \(\dfrac{{\sqrt x + 2}}{{\sqrt x - 1}}\)
2) \(\left[ \begin{array}{l}
0 \le x < 1\\
4 < x
\end{array} \right.\)
3) \(\left[ \begin{array}{l}
x = 16\\
x = 4\\
x = 0
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)P = \dfrac{{x + 1 + \sqrt x }}{{x + 1}}:\left( {\dfrac{1}{{\sqrt x - 1}} - \dfrac{{2\sqrt x }}{{x\left( {\sqrt x - 1} \right) + \left( {\sqrt x - 1} \right)}}} \right) - \dfrac{{\left( {\sqrt x + 1} \right)\left( {x + \sqrt x + 1} \right)}}{{x + \sqrt x + 1}}\\
= \dfrac{{x + 1 + \sqrt x }}{{x + 1}}:\dfrac{{x + 1 - 2\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + 1} \right)}} - \left( {\sqrt x + 1} \right)\\
= \dfrac{{x + 1 + \sqrt x }}{{x + 1}}.\dfrac{{\left( {\sqrt x - 1} \right)\left( {x + 1} \right)}}{{{{\left( {\sqrt x - 1} \right)}^2}}} - \left( {\sqrt x + 1} \right)\\
= \dfrac{{x + 1 + \sqrt x }}{{\sqrt x - 1}} - \left( {\sqrt x + 1} \right)\\
= \dfrac{{x + 1 + \sqrt x - x + 1}}{{\sqrt x - 1}}\\
= \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}}\\
b)P < 4\\
\to \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}} < 4\\
\to \dfrac{{\sqrt x + 2 - 4\sqrt x + 4}}{{\sqrt x - 1}} < 0\\
\to \dfrac{{6 - 3\sqrt x }}{{\sqrt x - 1}} < 0\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
6 - 3\sqrt x > 0\\
\sqrt x - 1 < 0
\end{array} \right.\\
\left\{ \begin{array}{l}
6 - 3\sqrt x < 0\\
\sqrt x - 1 > 0
\end{array} \right.
\end{array} \right. \to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
2 > \sqrt x \\
\sqrt x < 1
\end{array} \right.\\
\left\{ \begin{array}{l}
2 < \sqrt x \\
\sqrt x > 1
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sqrt x < 1\\
2 < \sqrt x
\end{array} \right. \to \left[ \begin{array}{l}
0 \le x < 1\\
4 < x
\end{array} \right.\\
3)P = \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}} = \dfrac{{\sqrt x - 1 + 3}}{{\sqrt x - 1}} = 1 + \dfrac{3}{{\sqrt x - 1}}\\
P \in Z \to \dfrac{3}{{\sqrt x - 1}} \in Z\\
\to \sqrt x - 1 \in U\left( 3 \right)\\
\to \left[ \begin{array}{l}
\sqrt x - 1 = 3\\
\sqrt x - 1 = - 3\left( l \right)\\
\sqrt x - 1 = 1\\
\sqrt x - 1 = - 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sqrt x = 4\\
\sqrt x = 2\\
\sqrt x = 0
\end{array} \right. \to \left[ \begin{array}{l}
x = 16\\
x = 4\\
x = 0
\end{array} \right.
\end{array}\)