Đáp án:
Bài 20:
a) \( - \dfrac{1}{{\sqrt x - 2}}\)
b) \(0 \le x < 4\)
Bài 23:
a) \(\dfrac{{ - 3}}{{\sqrt x + 3}}\)
b) \(x \ge 0;x \ne 4\)
c) \(Min = - 1\)
Giải thích các bước giải:
\(\begin{array}{l}
B20:\\
a)DK:x \ge 0;x \ne 4\\
B = \dfrac{{\sqrt x - 2\left( {\sqrt x + 2} \right) + \sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}:\dfrac{{x - 4 + 10 - x}}{{\sqrt x + 2}}\\
= \dfrac{{2\sqrt x - 2 - 2\sqrt x - 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}.\dfrac{{\sqrt x + 2}}{6}\\
= \dfrac{{ - 6}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}.\dfrac{{\sqrt x + 2}}{6}\\
= - \dfrac{1}{{\sqrt x - 2}}\\
b)B > 0\\
\to - \dfrac{1}{{\sqrt x - 2}} > 0\\
\to \dfrac{1}{{\sqrt x - 2}} < 0\\
\to \sqrt x - 2 < 0\\
\to 0 \le x < 4\\
B23:\\
a)DK:x \ge 0;x \ne 9\\
P = \dfrac{{2\sqrt x \left( {\sqrt x - 3} \right) + \sqrt x \left( {\sqrt x + 3} \right) - 3x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}:\dfrac{{2\sqrt x - 2 - \sqrt x + 3}}{{\sqrt x - 3}}\\
= \dfrac{{2x - 6\sqrt x + x + 3\sqrt x - 3x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x - 3}}{{\sqrt x + 1}}\\
= \dfrac{{ - 3\sqrt x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x - 3}}{{\sqrt x + 1}}\\
= \dfrac{{ - 3\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x - 3}}{{\sqrt x + 1}}\\
= \dfrac{{ - 3}}{{\sqrt x + 3}}\\
b)P < \dfrac{1}{2}\\
\to \dfrac{{ - 3}}{{\sqrt x + 3}} < \dfrac{1}{2}\\
\to \dfrac{{ - 6 - \sqrt x - 3}}{{2\left( {\sqrt x + 3} \right)}} < 0\\
\to - \dfrac{{\sqrt x + 9}}{{2\left( {\sqrt x + 3} \right)}} < 0\\
\to \dfrac{{\sqrt x + 9}}{{2\left( {\sqrt x + 3} \right)}} > 0\\
Do:\left\{ \begin{array}{l}
\sqrt x + 9 > 0\\
\sqrt x + 3 > 0
\end{array} \right.\forall x \ge 0\\
KL:x \ge 0;x \ne 4\\
c)P = \dfrac{{ - 3}}{{\sqrt x + 3}}\\
Do:\sqrt x \ge 0\forall x \ge 0\\
\to \sqrt x + 3 \ge 3\\
\to \dfrac{3}{{\sqrt x + 3}} \le 1\\
\to - \dfrac{3}{{\sqrt x + 3}} \ge - 1
\end{array}\)
\(\begin{array}{l}
\to Min = - 1\\
\Leftrightarrow x = 0
\end{array}\)