Đáp án:
Giải thích các bước giải:
`M=\frac{2\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{10\sqrt{x}-3}{9-x}`
ĐK: `x \ge 0, x \ne 9`
`M=\frac{2\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{(\sqrt{x}+1)(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}+\frac{10\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}`
`M=\frac{2x-6\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{x+3\sqrt{x}+\sqrt{x}+3}{(\sqrt{x}-3)(\sqrt{x}+3)}+\frac{10\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}`
`M=\frac{2x-6\sqrt{x}-x-4\sqrt{x}-3+10\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}`
`M=\frac{x-6}{(\sqrt{x}-3)(\sqrt{x}+3)}`