Lời giải.
`\text{ĐKXĐ}:x>0,x\ne4`
`a)P=(1/{\sqrt{x}+2}+1/{\sqrt{x}-2}).{\sqrt{x}-2}/\sqrt{x}`
`P=({\sqrt{x}-2}/{(\sqrt{x}+2)(\sqrt{x}-2))+{\sqrt{x}+2}/{(\sqrt{x}+2)(\sqrt{x}-2))).{\sqrt{x}-2}/\sqrt{x}`
`P={\sqrt{x}-2+\sqrt{x}+2}/{(\sqrt{x}+2)(\sqrt{x}-2)}.{\sqrt{x}-2}/\sqrt{x}`
`P={2\sqrt{x}}/{(\sqrt{x}+2)(\sqrt{x}-2)}.{\sqrt{x}-2}/\sqrt{x}`
`P=2/{\sqrt{x}+2}.`
Vậy với `x>0,x\ne4` thì `P=2/{\sqrt{x}+2}.`
`b)` Ta có: `7P=7. 2/{\sqrt{x}+2}= 14/ {\sqrt{x}+2}.`
`{7P}/3=7P. 1/3= 14/ {\sqrt{x}+2} . 1/3 = 14/{3(\sqrt{x}+2)}=14/{3\sqrt{x}+6}`
Với `x>0=>3\sqrt{x}>0=>3\sqrt{x}+6>6`
`=>14/{3\sqrt{x}+6}<14/6≈2,33` `(1)`
Mà `3\sqrt{x}+6>6>0,14>0=>14/{3\sqrt{x}+6}>0` `(2)`
Từ `(1)` và `(2)=>0<{7P}/3<2,33`
Mà `{7P}/3∈ZZ=>{7P}/3∈{1;2}`
`+)` Xét `{7P}/3=1<=>14/{3\sqrt{x}+6}=1`
`<=>14=3\sqrt{x}+6`
`<=>8=3\sqrt{x}`
`<=>8/3=\sqrt{x}`
`<=>x=(8/3)^2=64/9(tmdk)`
`+)` Xét `{7P}/3=2<=>14/{3\sqrt{x}+6}=2`
`<=>14=6\sqrt{x}+12`
`<=>2=6\sqrt{x}`
`<=>1/3=\sqrt{x}`
`<=>x=(1/3)^2=1/9(tmdk)`
Vậy `x∈{1/9;64/9}` thì `{7P}/3∈ZZ.`