Đáp án:
Giải thích các bước giải:
`A=((\sqrt{x}+1)/(\sqrt{x}-1)-(\sqrt{x}-1)/(\sqrt{x}+1)+4\sqrt{x}):(\sqrt{x}-1/(\sqrt{x}))`
ĐK: `x > 0, x \ne 1`
`A=[\frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{4\sqrt{x}(x-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}]:(\frac{x}{\sqrt{x}}-\frac{1}{\sqrt{x}})`
`A=[\frac{x+2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{x-2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{4x\sqrt{x}-4\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}]:(\frac{x-1}{\sqrt{x}})`
`A=[\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}].(\frac{\sqrt{x}}{x-1})`
`A=[\frac{4x\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}].(\frac{\sqrt{x}}{x-1})`
`A=\frac{4x^2}{(x-1)^2}`