`| x + 1/3 | : 2 = ( - 2 )^4`
`⇔ | x + 1/3 | : 2 = 16`
`⇔ | x + 1/3 | = 16 xx 2`
`⇔ | x + 1/3 | = 32`
`⇔` \(\left[ \begin{array}{l}x + \frac{1}{3} = 32\\x + \frac{1}{3} = - 32\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x = \frac{95}{3}\\x = \frac{- 97}{3}\end{array} \right.\)
Vậy `, x ∈ { 95/3 ; ( - 97 )/3 } .`
___________________________________________
`| x + 1/3 | : 2 = ( - 2^4 )`
`⇔ | x + 1/3 | : 2 = - 16`
`⇔ | x + 1/3 | = - 16 xx 2`
`⇔ | x + 1/3 | = - 32 (` Vô lý `)`
`⇔ x ∈ ∅`
Vậy `, x ∈ ∅ .`
___________________________________________
`2/3 xx ( 3 xx x - 2 ) + 25% xx x = ( - 9 )/6`
`⇔ 2 xx x - 4/3 + 1/4 xx x = ( - 9 )/6`
`⇔ x xx ( 2 + 1/4 ) = ( - 9 )/6 + 4/3`
`⇔ x xx 9/4 = ( - 1 )/6`
`⇔ x = ( - 1 )/6 : 9/4`
`⇔ x = ( - 2 )/27`
Vậy `, x = ( - 2 )/27 .`