Giải thích các bước giải:
\(\begin{array}{l}
51,\\
a,\,\,\dfrac{{\sqrt 5 + \sqrt 3 }}{{\sqrt 2 }} = \dfrac{{\sqrt 2 .\left( {\sqrt 5 + \sqrt 3 } \right)}}{{{{\sqrt 2 }^2}}} = \dfrac{{\sqrt {10} + \sqrt 6 }}{2}\\
b,\,\,\dfrac{{26}}{{5 + 2\sqrt 3 }} = \dfrac{{26.\left( {5 - 2\sqrt 3 } \right)}}{{\left( {5 + 2\sqrt 3 } \right)\left( {5 - 2\sqrt 3 } \right)}} = \dfrac{{26.\left( {5 - 2\sqrt 3 } \right)}}{{{5^2} - {{\left( {2\sqrt 3 } \right)}^2}}}\\
= \dfrac{{26.\left( {5 - 2\sqrt 3 } \right)}}{{25 - 12}} = \dfrac{{26.\left( {5 - 2\sqrt 3 } \right)}}{{13}} = 2.\left( {5 - 2\sqrt 3 } \right) = 10 - 4\sqrt 3 \\
c,\,\,\,\dfrac{{2\sqrt 6 - 3}}{{4 - \sqrt 6 }} = \dfrac{{\left( {2\sqrt 6 - 3} \right)\left( {4 + \sqrt 6 } \right)}}{{\left( {4 - \sqrt 6 } \right)\left( {4 + \sqrt 6 } \right)}}\\
= \dfrac{{8\sqrt 6 + 12 - 12 - 3\sqrt 6 }}{{{4^2} - {{\sqrt 6 }^2}}} = \dfrac{{5\sqrt 6 }}{{10}} = \dfrac{{\sqrt 6 }}{2}\\
d,\\
\dfrac{{15 - 2\sqrt 5 }}{{3\sqrt {15} - 2\sqrt 3 }} = \dfrac{{3.{{\sqrt 5 }^2} - 2\sqrt 5 }}{{3.\sqrt 5 .\sqrt 3 - 2\sqrt 3 }} = \dfrac{{\sqrt 5 .\left( {3\sqrt 5 - 2} \right)}}{{\sqrt 3 .\left( {3\sqrt 5 - 2} \right)}} = \dfrac{{\sqrt 5 }}{{\sqrt 3 }} = \dfrac{{15}}{3}\\
52,\\
a,\\
\dfrac{{\sqrt x + \sqrt y }}{{2\sqrt x }} = \dfrac{{\sqrt x .\left( {\sqrt x + \sqrt y } \right)}}{{2\sqrt x .\sqrt x }} = \dfrac{{x + \sqrt {xy} }}{{2x}}\\
b,\\
\dfrac{{x - 4y}}{{\sqrt x - 2\sqrt y }} = \dfrac{{{{\sqrt x }^2} - {{\left( {2\sqrt y } \right)}^2}}}{{\sqrt x - 2\sqrt y }}\\
= \dfrac{{\left( {\sqrt x - 2\sqrt y } \right)\left( {\sqrt x + 2\sqrt y } \right)}}{{\sqrt x - 2\sqrt y }} = \sqrt x + 2\sqrt y \\
c,\\
\dfrac{{a - 9b}}{{\sqrt a - 3\sqrt b }} = \dfrac{{{{\sqrt a }^2} - {{\left( {3\sqrt b } \right)}^2}}}{{\sqrt a - 3\sqrt b }}\\
= \dfrac{{\left( {\sqrt a - 3\sqrt b } \right)\left( {\sqrt a + 3\sqrt b } \right)}}{{\sqrt a - 3\sqrt b }} = \sqrt a + 3\sqrt b \\
d,\\
\dfrac{{x\sqrt x - 1}}{{\sqrt x - 1}} = \dfrac{{{{\sqrt x }^3} - {1^3}}}{{\sqrt x - 1}} = \dfrac{{\left( {\sqrt x - 1} \right)\left( {{{\sqrt x }^2} + \sqrt x .1 + {1^2}} \right)}}{{\sqrt x - 1}} = x + \sqrt x + 1\\
53,\\
a,\\
A = \dfrac{{\sqrt 7 - 5}}{2} - \dfrac{{6 - 2\sqrt 7 }}{4} + \dfrac{6}{{\sqrt 7 - 2}} - \dfrac{5}{{4 + \sqrt 7 }}\\
= \dfrac{{2.\left( {\sqrt 7 - 5} \right) - \left( {6 - 2\sqrt 7 } \right)}}{4} + \dfrac{{6\left( {\sqrt 7 + 2} \right)}}{{\left( {\sqrt 7 - 2} \right)\left( {\sqrt 7 + 2} \right)}} - \dfrac{{5.\left( {4 - \sqrt 7 } \right)}}{{\left( {4 + \sqrt 7 } \right)\left( {4 - \sqrt 7 } \right)}}\\
= \dfrac{{2\sqrt 7 - 10 - 6 + 2\sqrt 7 }}{4} + \dfrac{{6.\left( {\sqrt 7 + 2} \right)}}{{7 - 4}} - \dfrac{{5.\left( {4 - \sqrt 7 } \right)}}{{16 - 7}}\\
= \dfrac{{ - 16}}{4} + 2.\left( {\sqrt 7 + 2} \right) - \dfrac{{20 - 5\sqrt 7 }}{9}\\
= - 4 + 2\sqrt 7 + 4 - \dfrac{{20 - 5\sqrt 7 }}{9}\\
= 2\sqrt 7 - \dfrac{{20 - 5\sqrt 7 }}{9}\\
= \dfrac{{18\sqrt 7 - 20 + 5\sqrt 7 }}{9}\\
= \dfrac{{23\sqrt 7 - 20}}{9}\\
b,\\
B = \dfrac{2}{{\sqrt 6 - 2}} + \dfrac{2}{{\sqrt 6 + 2}} + \dfrac{5}{{\sqrt 6 }}\\
= \dfrac{{2.\left( {\sqrt 6 + 2} \right) + 2.\left( {\sqrt 6 - 2} \right)}}{{\left( {\sqrt 6 - 2} \right)\left( {\sqrt 6 + 2} \right)}} + \dfrac{{5\sqrt 6 }}{6}\\
= \dfrac{{2\sqrt 6 + 4 + 2\sqrt 6 - 4}}{{6 - 4}} + \dfrac{{5\sqrt 6 }}{6}\\
= \dfrac{{4\sqrt 6 }}{2} + \dfrac{{5\sqrt 6 }}{6}\\
= 2\sqrt 6 + \dfrac{{5\sqrt 6 }}{6}\\
= \dfrac{{17\sqrt 6 }}{6}\\
54,\\
a,\\
C = \dfrac{1}{{\sqrt 3 + \sqrt 2 - \sqrt 6 }} - \dfrac{1}{{\sqrt 3 + \sqrt 2 + \sqrt 6 }}\\
= \dfrac{{\left( {\sqrt 3 + \sqrt 2 + \sqrt 6 } \right) - \left( {\sqrt 3 + \sqrt 2 - \sqrt 6 } \right)}}{{\left( {\sqrt 3 + \sqrt 2 - \sqrt 6 } \right)\left( {\sqrt 3 + \sqrt 2 + \sqrt 6 } \right)}}\\
= \dfrac{{2\sqrt 6 }}{{{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - {{\sqrt 6 }^2}}}\\
= \dfrac{{2\sqrt 6 }}{{\left( {5 + 2\sqrt 6 } \right) - 6}}\\
= \dfrac{{2\sqrt 6 }}{{2\sqrt 6 - 1}}\\
= \dfrac{{2\sqrt 6 .\left( {2\sqrt 6 + 1} \right)}}{{\left( {2\sqrt 6 - 1} \right)\left( {2\sqrt 6 + 1} \right)}}\\
= \dfrac{{24 + 2\sqrt 6 }}{{{{\left( {2\sqrt 6 } \right)}^2} - 1}}\\
= \dfrac{{24 + 2\sqrt 6 }}{{23}}\\
b,\\
D = \left( {\dfrac{{\sqrt 6 - \sqrt 2 }}{{1 - \sqrt 3 }} - \dfrac{5}{{\sqrt 5 }}} \right):\dfrac{1}{{\sqrt 5 - \sqrt 2 }}\\
= \left( {\dfrac{{\sqrt 2 .\left( {\sqrt 3 - 1} \right)}}{{1 - \sqrt 3 }} - \sqrt 5 } \right).\left( {\sqrt 5 - \sqrt 2 } \right)\\
= \left( { - \sqrt 2 - \sqrt 5 } \right).\left( {\sqrt 5 - \sqrt 2 } \right)\\
= - \left( {\sqrt 5 + \sqrt 2 } \right).\left( {\sqrt 5 - \sqrt 2 } \right)\\
= - \left( {5 - 2} \right)\\
= - 3\\
55,\\
a,\\
E = 2\sqrt {40\sqrt {12} } + 3\sqrt {5\sqrt {48} } - 2\sqrt {\sqrt {75} } - 4\sqrt {15\sqrt {27} } \\
= 2\sqrt {40.2\sqrt 3 } + 3\sqrt {5.4\sqrt 3 } - 2\sqrt {5\sqrt 3 } - 4\sqrt {15.3\sqrt 3 } \\
= 2\sqrt {80\sqrt 3 } + 3.\sqrt {20\sqrt 3 } - 2\sqrt {5.\sqrt 3 } - 4\sqrt {45\sqrt 3 } \\
= 2.\sqrt {{4^2}.5\sqrt 3 } + 3\sqrt {{2^2}.5\sqrt 3 } - 2\sqrt {5\sqrt 3 } - 4\sqrt {{3^2}.5\sqrt 3 } \\
= 2.4.\sqrt {5\sqrt 3 } + 3.2\sqrt {5\sqrt 3 } - 2\sqrt {5\sqrt 3 } - 4.3.\sqrt {5\sqrt 3 } \\
= 8\sqrt {5\sqrt 3 } + 6\sqrt {5\sqrt 3 } - 2\sqrt {5\sqrt 3 } - 12\sqrt {5\sqrt 3 } \\
= 0
\end{array}\)