Đáp án:
1
Giải thích các bước giải:
\(\begin{array}{l}
DK:a \ge 0;a \ne 1\\
\left( {\dfrac{{1 - a\sqrt a }}{{1 - \sqrt a }} + \sqrt a } \right).{\left( {\dfrac{{1 - \sqrt a }}{{1 - a}}} \right)^2}\\
= \left[ {\dfrac{{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a + a} \right)}}{{1 - \sqrt a }} + \sqrt a } \right].{\left[ {\dfrac{{1 - \sqrt a }}{{\left( {1 - \sqrt a } \right)\left( {\sqrt a + 1} \right)}}} \right]^2}\\
= \left( {1 + 2\sqrt a + a} \right).\dfrac{1}{{{{\left( {\sqrt a + 1} \right)}^2}}}\\
= {\left( {\sqrt a + 1} \right)^2}.\dfrac{1}{{{{\left( {\sqrt a + 1} \right)}^2}}} = 1
\end{array}\)