`P=(x-2\sqrt{x}+5)/(\sqrt{x}-1)`
mà `P=5\to (x-2\sqrt{x}+5)/(\sqrt{x}-1)=5`
`\to x-2\sqrt{x}+5=5\sqrt{x}-5`
`\to x-7\sqrt{x}+10=0`
`\to x-2\sqrt{x}-5\sqrt{x}+10=0`
`\to \sqrt{x}(\sqrt{x}-2)-5(\sqrt{x}-2)=0`
`\to (\sqrt{x}-2)(\sqrt{x}-5)=0`
`\to` \(\left[ \begin{array}{l}\sqrt{x}-2=0\\\sqrt{x}-5=0\end{array} \right.\) `\to` \(\left[ \begin{array}{l}\sqrt{x}=2\\\sqrt{x}=5\end{array} \right.\) `\to` \(\left[ \begin{array}{l}x=4(TM)\\x=25(TM)\end{array} \right.\)
Vậy `x=4;x=25`