Đáp án:
$\\$
Bài `5.`
`5/(4×6) + 5/(6×8) + ... + 5/(298 × 300)`
`= 5 × [1/(4×6) + 1/(6×8) + ... + 1/(298 × 300)]`
`= 5 × 1/2 × [1/4 - 1/6 + 1/6 - 1/8 + ... + 1/298 - 1/300]`
`= 5/2 × [1/4 + (-1/6 + 1/6) + ... + (-1/298 + 1/298) - 1/300]`
`= 5/2 × [1/4 - 1/300]`
`= 5/2 × [75/300 - 1/300]`
`= 5/2 × 37/150`
`= 37/60`
$\\$
Bài `6.`
`A = (2011^{2011} + 2)/(2011^{2011} - 1)`
`-> A = (2011^{2011} - 1 + 3)/(2011^{2011} - 1)`
`-> A = (2011^{2011} - 1)/(2011^{2011}-1) + 3/(2011^{2011} -1)`
`-> A =1 + 3/(2011^{2011} - 1)`
`B = 2011^{2011}/(2011^{2011}-3)`
`-> B = (2011^{2011} -3+3)/(2011^{2011}-3)`
`-> B = (2011^{2011}-3)/(2011^{2011-3) + 3/(2011^{2011} - 3)`
`-> B = 1 + 3/(2011^{2011} - 3)`
Vì : `-1 > -3`
`-> 2011^{2011} - 1 > 2011^{2011} - 3`
`-> 1/(2011^{2011}- 1) < 1/(2011^{2011}-3)`
`-> 3/(2011^{2011}-1) < 3/(2011^{2011} - 3)`
`-> 1 + 3/(2011^{2011} - 1) < 1 + 3/(2011^{2011} - 3)`
`-> A < B`
Vậy `A < B`