Đáp án:
Giải thích các bước giải:
ĐKXĐ : `x > 0 , x \ne 1`
`1/(x+sqrtx)+(2sqrtx)/(x-1) - 1/(x-sqrtx)`
`= (sqrtx-1+2x-(sqrtx+1))/(sqrtx(sqrtx+1)(sqrtx-1))`
`= (-2+2x)/(sqrtx(sqrtx+1)(sqrtx-1))`
`= (sqrtx(-2+2x))/((sqrtx+1)(sqrtx-1)x)`
`= (sqrtx(-2+2x)(sqrtx-1))/((sqrtx-1)(sqrtx+1)x(x-1))`
`= (sqrtx(-2+2x)(sqrtx-1))/((sqrtx-1)x(x-1))`
`= (sqrtx(2x-2))/(x(x-1))`
`= (2sqrtx)/x`