Cách 1:
sinA = 2/3 = BC/AB
cho tạm BC=2; AB=3
PTG: $AC=\sqrt[]{AB^{2}-BC^2} = \sqrt[]{3^2-2^2} =\sqrt[]{5}$
=> tanB=AC/BC=$\frac{\sqrt[]{5}}{2}$
Cách 2:
$\frac{1}{sin^{2}A}=1+cot^{2}A = \frac{1}{(2/3)^2}$ => $cot^2A =\frac{5}{4}$ => $cotA = \frac{\sqrt[]{5}}{2}$ = $tanB$