`n(n-1)=6`
`=> n^2 - n =6`
`=> n^2 - n -6=0`
`=> n^2 - 3n + 2n -6=0`
`=> n(n-3) + 2(n-3)=0`
`=> (n-3)(n+2)=0`
`=>`\(\left[ \begin{array}{l}n-3=0\\n+2=0\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}n=3\\n= -2\end{array} \right.\)
Vậy `n =3 `hoặc `n= -2`