Đáp án:
$\\$
`(x+1)/8 + (x+3)/6 - (x+2)/7 = (x-4)/13`
`-> (x+1)/8 + (x+3)/6 - (x+2)/7 - (x-4)/13=0`
`-> ( (x+1)/8 + 1) + ( (x+3)/6 + 1) - ( (x+2)/7 + 1) - ( (x-4)/13+1) =0`
`-> ( (x+1)/8 + 8/8) + ( (x+3)/6 + 6/6) - ( (x+2)/7 + 7/7) - ( (x-4)/13 + 13/13)=0`
`-> (x+1+8)/8 + (x+3+6)/6 - (x+2+7)/7 - (x-4+13)/13=0`
`-> (x+9)/8 + (x+9)/6 - (x+9)/7 - (x+9)/13=0`
`-> (x+9) (1/8 + 1/6 - 1/7 - 1/13)=0`
`->x+9=0` (Vì `1/8 + 1/6 - 1/7 - 1/13 \ne 0`)
`->x=0-9`
`->x=-9`
Vậy `x=-9`