Đáp án + Giải thích các bước giải:
`||2x-1|+(1)/(2)|=(4)/(5)`
`=>` \(\left[ \begin{array}{l}|2x-1|+\dfrac{1}{2}=\dfrac{4}{5}\\|2x-1|+\dfrac{1}{2}=-\dfrac{4}{5}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}|2x-1|=\dfrac{3}{10}\\|2x-1|=-\dfrac{13}{10}\ (Loại)\end{array} \right.\)
`=>|2x-1|=(3)/(10)`
`=>` \(\left[ \begin{array}{l}2x-1=\dfrac{3}{10}\\2x-1=-\dfrac{3}{10}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}2x=\dfrac{13}{10}\\2x=\dfrac{7}{10}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=\dfrac{13}{20}\\x=\dfrac{7}{20}\end{array} \right.\)
Vậy `x∈{(13)/(20);(7)/(20)}`