$\text{Đáp án:}$
$\text{Gọi độ dài quãng đường AB là :x(km)(x>0)}$
$\text{Thời gian ô tô đi từ A đến B với vận tốc dự định là : $\dfrac{x}{30}$ (h)}$
$\text{Vận tốc thực tế ô tô là: 30+10=40(km/h)}$
$\text{Thời gian ô tô đi từ A đến B với vận tốc thực tế là : $\dfrac{x}{40}$ (h)}$
Vì thực tế ô tô đến B sớm hơn dự định $45 phút=0,75h$ nên ta có pt:
$ \dfrac{x}{30}-\dfrac{x}{40}=0,75$
$⇔ \dfrac{40x-30x}{1200}=0,75$
$⇔10x=900$
$⇔x=90(t/m)$
$\text{Vậy độ dài quãng đường AB là : 90(km)}$