Đáp án:
\(\begin{array}{l}
a)\left[ \begin{array}{l}
x = 2\\
x = - 1\\
x = 1\\
x = 0
\end{array} \right.\\
b)\left[ \begin{array}{l}
x = 2\\
x = - 2\\
x = 0
\end{array} \right.\\
g)\left[ \begin{array}{l}
x = 12\\
x = - 2\\
x = 6\\
x = 4
\end{array} \right.\\
h)\left[ \begin{array}{l}
x = 5\\
x = - 3\\
x = 3\\
x = - 1\\
x = 2\\
x = 0
\end{array} \right.
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ne \dfrac{1}{2}\\
\dfrac{3}{{2x - 1}} \in Z \to 2x - 1 \in U\left( 3 \right)\\
\to \left[ \begin{array}{l}
2x - 1 = 3\\
2x - 1 = - 3\\
2x - 1 = 1\\
2x - 1 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 2\\
x = - 1\\
x = 1\\
x = 0
\end{array} \right.\\
b)\dfrac{5}{{{x^2} + 1}} \in Z \to {x^2} + 1 \in U\left( 5 \right)\\
\to \left[ \begin{array}{l}
{x^2} + 1 = 5\\
{x^2} + 1 = 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
{x^2} = 4\\
{x^2} = 0
\end{array} \right. \to \left[ \begin{array}{l}
x = 2\\
x = - 2\\
x = 0
\end{array} \right.\\
g)DK:x \ne 5\\
\dfrac{{x + 2}}{{x - 5}} = \dfrac{{x - 5 + 7}}{{x - 5}} = 1 + \dfrac{7}{{x - 5}}\\
\dfrac{{x + 2}}{{x - 5}} \in Z \to \dfrac{7}{{x - 5}} \in Z\\
\to x - 5 \in U\left( 7 \right)\\
\to \left[ \begin{array}{l}
x - 5 = 7\\
x - 5 = - 7\\
x - 5 = 1\\
x - 5 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 12\\
x = - 2\\
x = 6\\
x = 4
\end{array} \right.\\
h)DK:x \ne 1\\
\dfrac{{{x^2} + 3}}{{x - 1}} = \dfrac{{{x^2} - 1 + 4}}{{x - 1}}\\
= \dfrac{{\left( {x - 1} \right)\left( {x + 1} \right) + 4}}{{x - 1}}\\
= \left( {x + 1} \right) + \dfrac{4}{{x - 1}}\\
\dfrac{{{x^2} + 3}}{{x - 1}} \in Z \to \dfrac{4}{{x - 1}} \in Z\\
\to x - 1 \in U\left( 4 \right)\\
\to \left[ \begin{array}{l}
x - 1 = 4\\
x - 1 = - 4\\
x - 1 = 2\\
x - 1 = - 2\\
x - 1 = 1\\
x - 1 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 5\\
x = - 3\\
x = 3\\
x = - 1\\
x = 2\\
x = 0
\end{array} \right.
\end{array}\)