Đáp án:
Áp dụng tính chất dãy tỉ số bằng nhau
$\begin{array}{l}
a)2x = 3y\\
 \Leftrightarrow \dfrac{x}{3} = \dfrac{y}{2} = \dfrac{{x + y}}{{2 + 3}} = \dfrac{{10}}{5} = 2\\
 \Leftrightarrow x = 6,y = 4\\
Vậy\,x = 6,y = 4\\
b)3x = 5y\\
 \Leftrightarrow \dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{x + y}}{{5 + 3}} = \dfrac{{40}}{8} = 5\\
 \Leftrightarrow x = 25,y = 15\\
Vậy\,x = 25,y = 15\\
c)4x = 3y\\
 \Leftrightarrow \dfrac{x}{3} = \dfrac{y}{4} = \dfrac{{x - y}}{{3 - 4}} = \dfrac{{11}}{{ - 1}} =  - 11\\
 \Leftrightarrow \left\{ \begin{array}{l}
x =  - 11.3 =  - 33\\
y =  - 11.4 =  - 44
\end{array} \right.\\
Vậy\,x =  - 33;y =  - 44\\
d) - 2x = 5y\\
 \Leftrightarrow \dfrac{x}{5} = \dfrac{y}{{ - 2}} = \dfrac{{x + y}}{{5 - 2}} = \dfrac{{30}}{3} = 10\\
 \Leftrightarrow \left\{ \begin{array}{l}
x = 50\\
y =  - 20
\end{array} \right.\\
Vậy\,x = 50;y =  - 20\\
e)\dfrac{{2x}}{3} = \dfrac{{5y}}{4}\\
 \Leftrightarrow \dfrac{{2x}}{{3.10}} = \dfrac{{5y}}{{4.10}}\\
 \Leftrightarrow \dfrac{{2x}}{{30}} = \dfrac{y}{8} = \dfrac{{2x + y}}{{30 + 8}} = \dfrac{{76}}{{38}} = 2\\
 \Leftrightarrow \left\{ \begin{array}{l}
x = \dfrac{{2.30}}{2} = 30\\
y = 2.8 = 16
\end{array} \right.\\
Vậy\,x = 30;y = 16\\
f)\dfrac{{3x}}{2} = \dfrac{{4y}}{7}\\
 \Leftrightarrow \dfrac{{3x}}{{2.12}} = \dfrac{{4y}}{{7.12}}\\
 \Leftrightarrow \dfrac{x}{8} = \dfrac{y}{{21}} = \dfrac{{5x}}{{40}} = \dfrac{{2y}}{{42}} = \dfrac{{5x - 2y}}{{40 - 42}} = \dfrac{{54}}{{ - 2}} =  - 27\\
 \Leftrightarrow \left\{ \begin{array}{l}
x =  - 27.8 =  - 216\\
y =  - 27.21 =  - 576
\end{array} \right.\\
Vậy\,x =  - 216;y =  - 576
\end{array}$