Đáp án:
`o,2-\sqrt{3}`
`p,\sqrt{5}-2`
Giải thích các bước giải:
`o,(1-{\sqrt{3}-1}/{2}):({\sqrt{3}-1}/{2}+2)`
`=({2}/{2}-{\sqrt{3}-1}/{2}):({\sqrt{3}-1}/{2}+{4}/{2})`
`={2-(\sqrt{3}-1)}/{2}:{\sqrt{3}-1+4}/{2}`
`={2-\sqrt{3}+1}/{2}.{2}/{3+\sqrt{3}}`
`={3-\sqrt{3}}/{3+\sqrt{3}}`
`={(3-\sqrt{3})^2}/{(3+\sqrt{3})(3-\sqrt{3})}`
`={9-6\sqrt{3}+3}/{9-3}`
`={12-6\sqrt{3}}/{6}`
`={6(2-\sqrt{3})}/{6}`
`=2-\sqrt{3}`
`p,{\sqrt{5}-2}/{5+2\sqrt{5}}-{1}/{2+\sqrt{5}}+{1}/{\sqrt{5}}`
`={\sqrt{5}-2}/{\sqrt{5}(\sqrt{5}+2)}-{1}/{\sqrt{5}+2}+{1}/{\sqrt{5}}`
`={\sqrt{5}-2}/{\sqrt{5}(\sqrt{5}+2)}-{\sqrt{5}}/{\sqrt{5}(\sqrt{5}+2)}+{\sqrt{5}+2}/{\sqrt{5}(\sqrt{5}+2)}`
`={\sqrt{5}-2-\sqrt{5}+\sqrt{5}+2}/{\sqrt{5}(\sqrt{5}+2)}`
`={\sqrt{5}}/{\sqrt{5}(\sqrt{5}+2)}`
`={1}/{\sqrt{5}+2}`
`={\sqrt{5}-2}/{(\sqrt{5}+2)(\sqrt{5}-2)}`
`={\sqrt{5}-2}/{5-4}`
`={\sqrt{5}-2}/{1}`
`=\sqrt{5}-2`