Đáp án:
`x\in {1;0;3;-1;-7;-2}`
Giải thích các bước giải:
Điều kiện:`x\in ZZ`
Đặt `A=1-(8x+6)/(x^2+1)`
`\qquad A=(x^2+1-8x-6)/(x^2+1)`
`\qquad A=(x^2-8x-5)/(x^2+1)`
Xét `A+7`
`A+7=(x^2-8x-5)/(x^2+1)+7`
`A+7=(x^2-8x-5+7x^2+7)/(x^2+1)`
`A+7=(8x^2-8x+2)/(x^2+1)`
`A+7=(2(4x^2-4x+1))/(x^2+1)`
`A+7=(2(2x-1)^2)/(x^2+1)`
`x^2+1>=1>0`
Mà `2(2x+1)^2>=0`
`=>A+7>=0`
`=>A>=-7(1)`
Xét `A-3`
`A-3=(x^2-8x-5)/(x^2+1)-3`
`A-3=(x^2-8x-5-3x^2-3)/(x^2+1)`
`A-3=(-2x^2-8x-8)/(x^2+1)`
`A-3=(-2(x^2+4x+4))/(x^2+1)`
`A-3=(-2(x+2)^2)/(x^2+1)`
Vì `x^2+1>=1>0`
Mà `-2(x+2)^2<=0`
`=>A-3<=0`
`=>A<=3(2)`
`(1)(2)=>-7<=A<=3`
Mà `A\inZZ`
`=>A\in{-7;-6;-5;-4;-3;-2;-1;0;1;2;3}`
`**A=-7`
`<=>(x^2-8x-5)/(x^2+1)=-7`
`<=>x^2-8x-5=-7x^2-7`
`<=>8x^2-8x+2=0`
`<=>2(2x-1)^2=0`
`<=>2x-1=0`
`<=>2x=1`
`<=>x=1/2(ktm)`
`**A=-6`
`<=>(x^2-8x-5)/(x^2+1)=-6`
`<=>x^2-8x-5=-6x^2-6`
`<=>7x^2-8x+1=0`
`<=>7x^2-7x-x+1=0`
`<=>7x(x-1)-(x-1)=0`
`<=>(x-1)(7x-1)=0`
`<=>[(x=1(tm)),(x=1/7(ktm)):}`
`<=>x=1`
`**A=-5`
`<=>(x^2-8x-5)/(x^2+1)=-5`
`<=>x^2-8x-5=-5x^2-5`
`<=>6x^2-8x=0`
`<=>3x^2-4x=0`
`<=>x(3x-4)=0`
`<=>[(x=0(tm)),(x=4/3(ktm)):}`
`<=>x=0`
`**A=-4`
`<=>(x^2-8x-5)/(x^2+1)=-4`
`<=>x^2-8x-5=-4x^2-4`
`<=>5x^2-8x-1=0`
`<=>x^2-8/5x-1/5=0`
`<=>x^2-2*x*4/5+16/25=21/25`
`<=>(x-4/5)^2=21/25`
`<=>x-4/5=(+-\sqrt{21})/5`
`<=>x=(+-\sqrt{21}+4)/5`(loại)
`**A=-3`
`<=>(x^2-8x-5)/(x^2+1)=-3`
`<=>x^2-8x-5=-3x^2-3`
`<=>4x^2-8x-2=0`
`<=>2x^2-4x-1=0`
`<=>x^2-2x-1/2=0`
`<=>x^2-2x+1=3/2`
`<=>(x-1)^2=6/4`
`<=>x-1=(+-\sqrt{6})/2`
`<=>x=(+-\sqrt{6}+2)/2`(loại)
`**A=-2`
`<=>(x^2-8x-5)/(x^2+1)=-2`
`<=>x^2-8x-5=-2x^2-2`
`<=>3x^2-8x-3=0`
`<=>3x^2-9x+x-3=0`
`<=>3x(x-3)+x-3=0`
`<=>(x-3)(3x+1)=0`
`<=>[(x=3(tm)),(x=-1/3(ktm)):}`
`<=>x=3`
`**A=-1`
`<=>(x^2-8x-5)/(x^2+1)=-1`
`<=>x^2-8x-5=-x^2-1`
`<=>2x^2-8x-4=0`
`<=>x^2-4x-2=0`
`<=>x^2-4x+4-6=0`
`<=>(x-2)^2=6`
`<=>x-2=+-\sqrt{6}`
`<=>x=+-\sqrt{6}+2`(loại)
`**A=0`
`<=>(x^2-8x-5)/(x^2+1)=0`
`<=>x^2-8x-5=0`
`<=>x^2-8x+16=21`
`<=>(x-4)^2=21`
`<=>x-4=+-\sqrt{21}`
`<=>x=4+-\sqrt{21}`(loại)
`**A=1`
`<=>(x^2-8x-5)/(x^2+1)=1`
`<=>x^2-8x-5=x^2+1`
`<=>8x+6=0`
`<=>4x+3=0`
`<=>4x=-3`
`<=>x=-3/4(ktm)`
`**A=2`
`<=>(x^2-8x-5)/(x^2+1)=2`
`<=>x^2-8x-5=2x^2+2`
`<=>x^2+8x+7=0`
`<=>x^2+x+7x+7=0`
`<=>x(x+1)+7(x+1)=0`
`<=>(x+1)(x+7)=0`
`<=>[(x=-1(tm)),(x=-7(tm)):}`
`**A=3`
`<=>(x^2-8x-5)/(x^2+1)=3`
`<=>x^2-8x-5=3x^2+3`
`<=>2x^2+8x+8=0`
`<=>x^2+4x+4=0`
`<=>(x+2)^2=0`
`<=>x=-2(tm)`
Vậy với `x\in {1;0;3;-1;-7;-2}` thì `1-(8x+6)/(x^2+1)\in ZZ.`