Đáp án:
$S=\{1\}$
Giải thích các bước giải:
ĐKXĐ: $\begin{cases}x^2-4x+3\ge 0\\2x^2-3x+1\ge 0\end{cases}⇔\begin{cases}(x-1)(x-3)\ge 0\\(x-1)(2x-1)\ge 0\end{cases}$
$⇔\begin{cases}\left[ \begin{array}{l}x\le 1\\x\ge 3\end{array} \right.\\\left[ \begin{array}{l}x\le \dfrac{1}{2}\\x\ge 1\end{array} \right.\end{cases}⇔\left[ \begin{array}{l}x\le \dfrac{1}{2}\\x=1\\x\ge 3\end{array} \right.$
$\sqrt{x^2-4x+3}-\sqrt{2x^2-3x+1}=x-1$
$⇔\sqrt{x^2-4x+3}+1-x=\sqrt{2x^2-3x+1}$
Bình phương $2$ vế với điều kiện:
$\sqrt{x^2-4x+3}+1-x\ge 0$
$⇒\sqrt{x^2-4x+3}\ge x-1\,\,(ĐK:\,x\ge 1)$
$⇒x^2-4x+3\ge x^2-2x-1$
$⇒x\le 1$
$\text{Pt}⇔(\sqrt{x^2-4x+3}+1-x)^2=(\sqrt{2x^2-3x+1})^2$
$⇔x^2-4x+3+2\sqrt{x^2-4x+3}.(1-x)+(1-x)^2=2x^2-3x+1$
$⇔x^2-4x+3+1-2x+x^2+2\sqrt{x^2-4x+3}.(1-x)=2x^2-3x+1$
$⇔2\sqrt{x^2-4x+3}.(1-x)=3x-3$
$⇔3(x-1)+2\sqrt{x^2-4x+3}.(x-1)=0$
$⇔(x-1)(3+2\sqrt{x^2-4x+3})=0$
$⇔\left[ \begin{array}{l}x-1=0\\3+2\sqrt{x^2-4x+3}=0\end{array} \right.⇔\left[ \begin{array}{l}x=1\,(TM)\\2\sqrt{x^2-4x+3}=-3\,(VN)\end{array} \right.$
Vậy $S=\{1\}$.