Đáp án+Giải thích các bước giải:
`M=((-sqrtx-4)/(x-2sqrtx)+3/(sqrtx-2)):((sqrtx+2)/sqrtx-sqrtx/(sqrtx-2))(x>0,x ne 4)`
`M=((-sqrtx)/(sqrtx(sqrtx-2))+(3sqrtx)/(sqrtx(sqrtx-2))):(((sqrtx+2)(sqrtx-2))/(sqrtx(sqrtx-2))-x/(sqrtx(sqrtx-2)))`
`M=(-sqrtx-4+3sqrtx)/(sqrtx(sqrtx-2)):(x-4-x)/(sqrtx(sqrtx-2))`
`M=(2sqrtx-4)/(sqrtx(sqrtx-2))*(sqrtx(sqrtx-2))/(-4)`
`M=(2sqrtx-4)/(-4)=(sqrtx-2)/(-2)`
`M=(2-sqrtx)/2`
`M=2x`
`<=>(2-sqrtx)/2=2x`
`<=>2-sqrtx=4x`
`<=>4x+sqrtx-2=0`
`<=>(2sqrtx)^2+2*2sqrtx*1/4+1/16=33/16`
`<=>(2sqrtx-1/4)^2=33/16`
`<=>` \(\left[ \begin{array}{l}2\sqrt x-\dfrac14=\dfrac{\sqrt{33}}{4}\\2\sqrt x-\dfrac14=-\dfrac{\sqrt{33}}{4}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2\sqrt x=\dfrac{\sqrt{33}+1}{4}\\2\sqrt x=\dfrac{-\sqrt{33}+1}{4}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}\sqrt x=\dfrac{\sqrt{33}+1}{8}\\\sqrt x=\dfrac{-\sqrt{33}+1}{8}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac{(\sqrt{33}+1)^2}{64}\\x=\dfrac{(-\sqrt{33}+1)^2}{64}\end{array} \right.\)