$\textit{5.12}$
$\text{$\dfrac{8^{14}}{4^{12}}$ }$
$\text{= $\dfrac{(2^3)^{14}}{(2^2)^{12}}$ }$
$\text{= $\dfrac{2^{42}}{2^{24}}$ }$
$\text{= $2^{18}$}$
$\text{Vậy $\dfrac{8^{14}}{4^{12}}$ = $2^{18}$}$
$\textit{5.13}$
$\text{$2^{24}$ và $3^{16}$}$
$\text{Ta có: $2^{24}$ = $(2^3)^8$ = $8^8$}$
$\text{$3^{16}$ = $(3^2)^8$ = $9^8$}$
$\text{Ta có: 8 < 9}$
$\text{nên $8^8$ < $9^8$}$
$\text{hay $2^{24}$ < $3^{16}$}$
$\text{Vậy $2^{24}$ < $3^{16}$}$
$\textit{5.14}$
$\text{$C_1$: $(2^2)^{(2^2)}$}$
$\text{= $(2^2)^{4}$}$
$\text{= $2^{\text{2 . 4}}$}$
$\text{= $2^8$}$
$\text{$C_2$: $(2^2)^{(2^2)}$}$
$\text{= $4^4$}$
$\text{= $(2^2)^4$}$
$\text{= $2^8$}$
$\text{Vậy $(2^2)^{(2^2)}$ = $2^8$}$
$\text{HỌC TỐT!}$