Đáp án:
`a.`Rút gọn:
`P=(\frac{1-asqrta}{1-sqrta}+sqrta)(\frac{1+asqrta}{1+sqrta}-sqrta)`
`= (\frac{(1-sqrta)(1+sqrta+a)}{1-sqrta}+sqrta)(\frac{(1+sqrta)(1-sqrta+a)}{1+sqrta}-sqrta)`
`= (1+sqrta+a+sqrta)(1-sqrta+a-sqrta)`
`= (1+2sqrta+a)(1-2sqrta+a)`
`= (1+a)^2-4a`
`= 1+2a+a^2-4a`
`= 1-2a+a^2`
`= a^2-2a+1`
`b.`Tìm `a`:
Để `P<7-4sqrt3` thì `a^2-2a+1<7-4sqrt3`
`<=> (a-1)^2<7-4sqrt3`
`<=> |a-1|<sqrt{7-4sqrt3}`
`<=> |a-1|<sqrt{(2-sqrt3)^2}`
`<=> |a-1|<2-sqrt3`
`<=>`\(\left[ \begin{array}{l}a-1<2\sqrt{3}\ (a\ge1)\\-(a-1)<2-\sqrt{3}\ (a<1)\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}a<3-\sqrt{3} \ (a\ge1)\\a>-1+\sqrt{3} \ (a<1)\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}1\le a<3-\sqrt{3}\\-1+\sqrt{3}<x<1\end{array} \right.\)
`<=> -1+sqrt3<a<3-sqrt3`