Đáp án:
$-(a-b-c)(a-b+c)(a+b-c)$
Giải thích các bước giải:
$a^2b+a^2c-a^3+b^2a+b^2c-b^3+c^2a+c^2b-c^3 -2abc\\ =-a^3-a^2b+a^2c-b^3-b^2a+b^2c-c^3+c^2a+c^2b+2a^2b+2ab^2 -2abc\\ =-a^2(a+b-c)-b^2(a+b-c)+c^2(a+b-c)+2ab(a+b-c)\\ =(-a^2+2ab-b^2+c^2)(a+b-c)\\ =-(a^2-2ab+b^2-c^2)(a+b-c)\\ =-\left((a-b)^2-c^2\right)(a+b-c)\\ =-(a-b-c)(a-b+c)(a+b-c)$