Lời giải:
Vì \(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\leq 1\Rightarrow -1\leq x,y,z\leq 1\)
Lại có:
\(\left\{\begin{matrix} x^2+y^2+z^2=1\\ x^3+y^3+z^3=1\end{matrix}\right.\Rightarrow x^3+y^3+z^3-x^2-y^2-z^2=0\)
\(\Rightarrow x^2(x-1)+y^2(y-1)+z^2(z-1)=0\)
Vì \(\left\{\begin{matrix} x^2\geq 0\\ x-1\leq 0\end{matrix}\right.\Rightarrow x^2(x-1)\leq 0\)
Hoàn toàn tt: \(y^2(y-1)\leq 0; z^2(z-1)\leq 0\)
Do đó: \(x^2(x-1)+y^2(y-1)+z^2(z-1)\leq 0\)
Dấu bằng xảy ra khi \(x^2(x-1)=y^2(y-1)=z^2(z-1)=0\)
Kết hợp với \(x+y+z=1\Rightarrow (x,y,z)=(1,0,0)\) hoặc hoán vị
Do đó:
\(P=x^{2017}+y^{2017}+z^{2017}=1\)