$\\$
Đặt `A = 9/10-11/15 + 13/21 - 15/28 + ... + 197/4851 - 199/4950`
`->A = (9/10 - 11/15)+(13/21 -15/28) + ... + (197/4851 - 199/4950)`
`-> A = 1/6 + 1/12 + ... + 1/2450`
`->A = 1/(2.3)+1/(3.4)+...+1/(49 . 50)`
`->A = 1/2 - 1/3+1/3-1/4+...+1/49 - 1/50`
`->A=1/2 - 1/50`
`->A=12/25`
$\\$
`H=38/25 + 9/10-11/15 + 13/21 - 15/28 + ... + 197/4851 - 199/4950`
`->H= 38/25 + (9/10-11/15 + 13/21 - 15/28 + ... + 197/4851 - 199/4950)`
`->H = 38/25 + 12/25`
`->H=2`
Vậy `H=2`