$\\$
`a,`
`(5x-1,45)/6 + (5x-1,45)/7 + (5x-1,45)/8 = (5x-1,45)/9 + (5x-1,45)/10`
`-> (5x-1,45)/6 + (5x-1,45)/7 + (5x-1,45)/8 - (5x-1,45)/9 - (5x-1,45)/10=0`
`-> (5x-1,45) (1/6 + 1/7 + 1/8 - 1/9 - 1/10)=0`
`->5x-1,45=0` (Do `1/6 +1/7 +1/8 - 1/9-1/10 \ne 0`)
`->5x=1,45`
`->x=29/100`
Vậy `x=29/100`
$\\$
`b,`
`(x+5)/2011 + (x+4)/2012 = (x+3)/2013 + (x+2)/2014`
`-> (x+5)/2011 + (x+4)/2012 +2 = (x+3)/2013 + (x+2)/2014 + 2`
`-> ( (x+5)/2011 +1)+( (x+4)/2012 +1) = ( (x+3)/2013 +1) + ( (x+2)/2014 +1)`
`-> ( (x+5)/2011 +2011/2011)+( (x+4)/2012 +2012/2012) = ( (x+3)/2013+2013/2013)+( ( x+2)/2014+2014/2014)`
`-> (x+2016)/2011 + (x+ 2016)/2012 = (x+2016)/2013 + ( x+2016)/2014`
`-> (x+2016)/2011 + (x+ 2016)/2012 - (x+2016)/2013 - (x+2016)/2014=0`
`-> (x+2016)(1/2011 +1/2012-1/2013-1/2014)=0`
`->x+2016=0` (Do `1/2011 +1/2012-1/2013-1/2014 \ne 0`)
`->x=-2016`
Vậy `x=-2016`