`#tnvt`
`(2x^4-3x^3+x^2):(-x^2)+4(x+1)^2=0`
`<=>-2x^2+3x-1+4(x^2+2x+1)=0`
`<=>-2x^2+3x-1+4x^2+8x+4=0`
`<=>2x^2+11x+3=0`
`<=>2x^2+2.2.x. 11/4+2. 121/16-2.97/16=0`
`<=>2(x^2+2.x. 11/4+121/16-97/16)=0`
`<=>(x+11/4)^2-(\frac{\sqrt{97}}{4})^2=0`
`<=>(x+11/4-\frac{\sqrt{97}}{4)(x+11/4+\frac{\sqrt{97}}{4})=0`
`<=>(x+\frac{11-\sqrt{97}}{4})(x+\frac{\sqrt{97}+11}{4})=0`
`<=>`$\left[\begin{matrix} x=\dfrac{-11+\sqrt{97}}{4}\\ x=\dfrac{-\sqrt{97}-11}{4}\end{matrix}\right.$
Vậy `S={\frac{-11+-\sqrt{97}}{4}}`