Đáp án:
\(\dfrac{{\sqrt x - 2}}{{\sqrt x + 1}}\)
Giải thích các bước giải:
\(\begin{array}{l}
P = \dfrac{{\sqrt x + 1 - \sqrt x }}{{\sqrt x + 1}}:\dfrac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) - \left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right) + \sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{1}{{\sqrt x + 1}}:\dfrac{{x - 9 - x + 4 + \sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{1}{{\sqrt x + 1}}.\dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}}\\
= \dfrac{{\sqrt x - 2}}{{\sqrt x + 1}}
\end{array}\)