Xét ΔABC ta có: E là trung điểm của cạnh AB
D là trung điểm của cạnh AC
Nên ED là đường trung bình của Δ ABC
⇒ ED // BC và ED = 1/2 BC
(tính chất đường trung bình của tam giác)
+) Tứ giác BCDE có ED // BC nên BCDE là hình thang.
Xét hình thang BCDE, ta có: BC // DE
M là trung điểm cạnh bên BE
N là trung điểm cạnh bên CD
Nên MN là đường trung hình hình thang BCDE ⇒ MN // DE và MN=(DE+BC)/2=(BC/2+BC)/2=(3BC)/4
(tính chất đường trung bình hình thang)
Xét ΔBED, ta có: M là trung điểm BE
MI // DE
Suy ra: MI là đường trung bình của ΔBED
⇒ MI = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)
Xét ΔCED ta có: N là trung điểm CD
NK // DE
Suy ra: NK là đường trung bình của ΔCED
⇒ NK = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)
IK = MN – (MI + NK) = 3/4 BC – (1/4 BC + 1/4 BC) = 1/4 BC
⇒ MI = IK = KN = 1/4 BC