Đáp án + Giải thích các bước giải:
#$hyn$
$(4x^{2}-25)^2-9(2x-5)^2$
$=(4x^2-25)^2-(6x-15)^2$
$=(4x^2-25-6x+15)(4x^2-15+6x-15)$
$=(4x^2-6x-10(4x^2+6x-40)$
$=(4x^2+4x-10x-10)(4x^2+16x-10x-40)$
$=[4x(x+1)-10(x+1)][4x(x+4)-10(x+4)]$
$=(4x-10)(x+1)(4x-10)(x+4)$
$=(4x-10)^2.(x+1)(x+4)$
$=4.(2x-5)^2.(x+1)(x+4)$
$a^6-a^4+2a^3+2a^2$
$=a^2.(a^4-a^2+2a+2)$
$=a^2.(a^4+a^3-a^3-a^2+2a+2)$
$=a^2.[a^3.(a+1)-a^2.(a+1)+2.(a+1)]$
$=a^2.(a+1)(a^3-a^2+2)$