Đáp án đúng: D
Giải chi tiết:\({3^{4x + 1}} = {27^{x + 3}}\)
Vì \(27 = {3^3}\,\, \Rightarrow {27^{x + 3}} = {\left( {{3^3}} \right)^{x + 3}} = {3^{3\left( {x + 3} \right)}}\)
\(\begin{array}{l} \Rightarrow {3^{4x + 1}} = {3^{3\left( {x + 3} \right)}}\\\,\,\,\,\,\,4x + 1 = 3(x + 3)\\\,\,\,\,\,\,4x + 1 = 3x + 9\\\,\,\,\,\,\,4x - 3x = 9 - 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 8\end{array}\)
Vậy \(x = 8.\)
Chọn D.