Viết số thích hợp vào chỗ chấm: \(\frac{1}{6}\) của 48kg là: ….. kg.A.\(9\)B.\(8\)C.\(7\)D.\(6\)
Kết quả của phép tính \(108 \times 3\) là: A.\(210\)B.\(324\)C.\(424\)D.\(344\)
Cho tứ diện \(ABCD\) có thể tích bằng \(V\). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AC\). Tính thể tích của khối đa diện \(MNBCD\).A.\(\dfrac{{3V}}{4}\)B.\(\dfrac{V}{4}\)C.\(\dfrac{V}{2}\)D.\(\dfrac{{2V}}{3}\)
Đảng, Chính phủ và Chủ tịch Hồ Chí Minh kêu gọi đồng bào thực hiện “Tuần lễ vàng”, “Quỹ độc lập” nhằm mục đíchA.Quyên góp tiền để xây dựng đất nước.B.Đáp ứng nhu cầu cung cấp tiền tệ cho nhân dân.C.Hỗ trợ việc giải quyết nạn đói.D.Giải quyết khó khăn về tài chính của đất nước.
Từ sau ngày 2/9/1945 đến trước ngày 6/3/1946, Đảng ta chủ trương tạm hòa hoãn, nhân nhượng với quân Trung Hoa Dân quốc vìA.Muốn cô lập các lực lượng phản động.B.Lực lượng quân Trung Hoa Dân quốc và tay sai quá mạnh.C.Tránh trường hợp một lúc phải đối phó với nhiều kẻ thù.D.Lực lượng vũ trang của ta còn non yếu.
Việt Nam Dân chủ Cộng hòa kí với Pháp Hiệp định Sơ bộ (6/3/1946) là nhằm mục đích A.Để củng cố khối đoàn kết toàn dân, tiêu diệt bọn phản cách mạng.B.Có thời gian để củng cố chính quyền cách mạng và lực lượng vũ trang.C.Để tập trung lực lượng đối phó với quân Trung Hoa Dân quốc.D.Đẩy quân Trung Hoa Dân quốc về nước, tránh cùng một lúc đối phó với nhiều kẻ thù.
Sách lược đấu tranh chống ngoại xâm của Đảng, Chính phủ và Chủ tịch Hồ Chí Minh sau Cách mạng tháng Tám năm 1945 làA.Tránh trường hợp một lúc phải đối phó với nhiều kẻ thù.B.Tập trung cô lập cao độ kẻ thù.C.Tổ chức kháng chiến ở cả hai miền Nam – Bắc.D.Tập trung lực lượng đối phó với quân Trung Hoa Dân quốc.
Sách lược đấu tranh chống ngoại xâm của Đảng và nhân dân ta trong năm đầu sau Cách mạng tháng Tám năm 1945 chứng tỏA.Nhân dân ta quyết tâm xây dựng và bảo vệ chính quyền cách mạng.B.Truyền thống yêu nước của nhân dân được phát huy cao độ.C.Âm mưu xâm lược nước ta lần nữa của thực dân Pháp đã bị thất bại.D.Chủ trương cứng rắn về nguyên tắc, mềm dẻo về sách lược của Đảng.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Mặt bên \(\left( {SAB} \right)\) là tam giác đều nằm trong mặt phẳng vuông góc tới đáy \(\left( {ABCD} \right)\). Tính thể tích \(V\) của khối chóp \(S.ABCD\).A.\(V = \dfrac{{{a^3}\sqrt 3 }}{6}\)B.\(V = \dfrac{{{a^3}\sqrt 3 }}{4}\)C.\(V = {a^3}\sqrt 3 \)D.\(V = \dfrac{{{a^3}\sqrt 3 }}{2}\)
Cho hình chóp \(S.ABC\) có \(SA = BC = a\sqrt 3 ,\,\,AB = SC = 2a,\,\,AC = 2a\). Hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {ABC} \right)\) vuông góc với nhau. Tính thể tích khối chóp \(S.ABC\).A.\(\dfrac{{{a^3}\sqrt 3 }}{2}\)B.\(\dfrac{{{13{a^3}}}}{16}\)C.\(\dfrac{{{a^3}}}{2}\)D.\(\dfrac{{{a^3}\sqrt 3 }}{6}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến