Cho tứ diện \(ABCD\). Gọi \(O\) là một điểm nằm bên trong tam giác \(BCD\) và \(M\) là một điểm trên đoạn \(AO\). Gọi \(I,\,\,J\) là hai điểm trên cạnh \(BC,\,\,BD\). Giả sử \(IJ\) cắt \(CD\) tại \(K\), \(BO\) cắt \(IJ\) tại \(E\) và cắt \(CD\) tại \(H\), \(ME\) cắt \(AH\) tại \(F\). Giao tuyến của hai mặt phẳng \(\left( {MIJ} \right)\) và \(\left( {ACD} \right)\) là đường thẳng:
A.\(KM\)
B.\(AK\)
C.\(MF\)
D.\(KF\)

Các câu hỏi liên quan