Đáp án đúng: D
Giải chi tiết:
Ta có:
\(\begin{array}{l}\overrightarrow {AM} = \dfrac{1}{2}\left( {\overrightarrow {AB'} + \overrightarrow {AB} } \right)\\\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}\left( {\overrightarrow {AA'} + \overrightarrow {A'C'} + \overrightarrow {C'B'} + \overrightarrow {AC} + \overrightarrow {CB} } \right)\\\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}\left( {\overrightarrow c - \overrightarrow a + \overrightarrow b - \overrightarrow a + \overrightarrow b } \right)\\\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}\left( { - 2\overrightarrow a + 2\overrightarrow b + \overrightarrow c } \right)\\\,\,\,\,\,\,\,\,\,\, = - \overrightarrow a + \overrightarrow b + \dfrac{1}{2}\overrightarrow c \end{array}\)
Chọn D.