$$\eqalign{
   & P = x - 2\sqrt {2x - 3}   \cr 
   & DK:\,\,2x - 3 \ge 0 \Leftrightarrow x \ge {3 \over 2}  \cr 
   & f\left( x \right) = x - 2\sqrt {2x - 3}   \cr 
   & f'\left( x \right) = 1 - {{2.2} \over {2\sqrt {2x - 3} }} = 1 - {2 \over {\sqrt {2x - 3} }} = 0  \cr 
   &  \Leftrightarrow \sqrt {2x - 3}  = 2 \Leftrightarrow 2x - 3 = 4 \Leftrightarrow x = {7 \over 2}\,\,\left( {tm} \right)  \cr 
   & Lap\,\,\,BBT  \cr 
   &  \Rightarrow \min f\left( x \right) = \left( {{7 \over 2}} \right) = {7 \over 2} - 2\sqrt {2.{7 \over 2} - 3}  =  - {1 \over 2} \cr} $$