Giải
\(\left|3x+1\right|+\left|2y-1\right|=0\)
Ta có : \(\left|3x+1\right|\ge0\) với \(\forall x\)
\(\left|2y-1\right|=0\) với \(\forall y\)
Nên \(\left|3x+1\right|+\left|2y-1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|3x+1\right|=0\\\left|2y-1\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+1=0\\2y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{1}{2}\end{matrix}\right.\)