Chứng minh rằng 1/3x + 3y + 2z + 1/3x + 2y + 3z + 1/2x + 3y + 3z ≤ 3/2

Cho x,y,z là các số dương thỏa mãn \(\dfrac{1}{x+y}\)+\(\dfrac{1}{y+x}\)+ \(\dfrac{1}{z+x}\)=6.

CMr: \(\dfrac{1}{3x+3y+2z}\)+ \(\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\le\dfrac{3}{2}\).

Giúp mình nk ^^

Các câu hỏi liên quan