$\frac{\frac{6}{10}+\frac{6}{70}-\frac{6}{250}-\frac{6}{4038}-\frac{6}{4042}}{\frac{7}{15}+\frac{7}{105}-\frac{7}{375}-\frac{7}{6057}-\frac{7}{6063}}$
=$\frac{\frac{6}{2.5}+\frac{6}{2.5.7}-\frac{6}{2.5^{3}}-\frac{6}{2.3.673}-\frac{6}{2.43.47}}{\frac{7}{3.5}+\frac{7}{3.5.7}-\frac{7}{3.5^{3}}-\frac{7}{3.3.673}-\frac{7}{3.43.47}}$
=$\frac{\frac{6}{2}(\frac{1}{5}+\frac{1}{5.7}-\frac{1}{5^{3}}-\frac{1}{3.673}-\frac{1}{43.47})}{\frac{7}{3}(\frac{1}{5}+\frac{1}{5.7}-\frac{1}{5^{3}}-\frac{1}{3.673}-\frac{1}{43.47})}$
=$\frac{9}{7}$