Trong số đồ thị của các hàm số \(y = \frac{1}{x};\) \(y = {x^2} + 1;\) \(y = \frac{{{x^2} + 3x + 7}}{{x - 1}};\) \(y = \frac{x}{{{x^2} - 1}}\) có tất cả bao nhiêu đồ thị có tiệm cận ngang?
A.1
B.3
C.2
D.4

Các câu hỏi liên quan

Cho biểu thức: \(P = \frac{{2{x^2} - 1}}{{{x^2} + x}} - \frac{{x - 1}}{x} + \frac{3}{{x + 1}}\)
1. Rút gọn \(P\) .
2. Tìm x để \(P = 0\)
3. Tính giá trị biểu thức \(P\) khi \(x\) thỏa mãn: \({x^2} - x = 0\).
4. Tìm giá trị lớn nhất của biểu thức \(Q = \frac{1}{{{x^2} - 9}}.P\)
A.\(\begin{array}{l}1)\,\,P = \frac{{x + 3}}{{x + 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,P = 2\\2)\,\,x =  - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,maxQ = \frac{{ - 1}}{4}\end{array}\)
B.\(\begin{array}{l}1)\,\,P = \frac{{x + 3}}{{x + 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,P = 2\\2)\,\,x = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,maxQ = \frac{1}{4}\end{array}\)
C.\(\begin{array}{l}1)\,\,P = \frac{{x - 3}}{{x - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,P =  - 2\\2)\,\,x =  - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,maxQ = \frac{{ - 1}}{4}\end{array}\)
D.\(\begin{array}{l}1)\,\,P = \frac{{x - 3}}{{x - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3)\,\,P =  - 2\\2)\,\,x =  - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4)\,\,maxQ = \frac{1}{4}\end{array}\)