Đáp án đúng: B
Giải chi tiết:Ta có:
\(\begin{array}{l}{x^{18}}:{x^6} = {x^{18 - 6}} = {x^{12\,\,}}\,\,\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x^4}.{x^3} = {x^{4 + 3}} = {x^7}\\{x^4}.{x^8} = \,{x^{4 + 8}} = {x^{12}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\left[ {{{\left( {{x^3}} \right)}^2}} \right]^2} = {\left[ {{x^{3.2}}} \right]^2} = {\left( {{x^6}} \right)^2} = {x^{6.2}} = {x^{12}}\end{array}\)
Vậy phép tính không có kết quả \({x^{12}}\) là \({x^4}.{x^3}\)
Chọn B.