Tìm \(x,y,z\) biết rằng: \(\frac{x}{{y + z + 1}} = \frac{y}{{x + z + 1}} = \frac{z}{{x + y - 2}} = x + y + z\)
A.\(\left( {x;\,y;\,z} \right) \in \left\{ {\left( {0;\,0;\,0} \right);\,\left( {\frac{1}{2};\,\frac{1}{2};\,\frac{{ - 1}}{2}} \right)} \right\}\)
B.\(\left( {x;\,y;\,z} \right) \in \left\{ {\left( {1;\,1;\,1} \right);\,\left( {\frac{1}{2};\,\frac{1}{2};\,\frac{1}{2}} \right)} \right\}\)
C.\(\left( {x;\,y;\,z} \right) \in \left\{ {\left( {0;\,0;\,0} \right);\,\left( {\frac{{ - 1}}{2};\,\frac{{ - 1}}{2};\,\frac{{ - 1}}{2}} \right)} \right\}\)
D.\(\left( {x;\,y;\,z} \right) \in \left\{ {\left( {1;\,1;\,1} \right);\,\left( {\frac{{ - 1}}{2};\,\frac{{ - 1}}{2};\,\frac{{ - 1}}{2}} \right)} \right\}\)