Tìm số hạng không chứa \(x\) trong khai triển \(f\left( x \right) = {\left( {\sqrt[3]{x} + \frac{1}{{\sqrt[4]{x}}}} \right)^7}\)với \(x > 0\). A.35 B.42 C.56 D.45
Đáp án đúng: A Giải chi tiết:Số hạng tổng quát trong khai triển: \({T_{k + 1}} = C_7^k{\left( {\sqrt[3]{x}} \right)^{7 - k}}{\left( {\frac{1}{{\sqrt[4]{x}}}} \right)^k} = C_7^k{x^{\frac{7}{3} - \frac{7}{{12}}k}}\left( {k \in \mathbb{N},k \le 7} \right)\) Ứng với số hạng không chứa \(x\) ta có: \(\frac{7}{3} - \frac{7}{{12}}k = 0 \Leftrightarrow k = 4\). Vậy số hạng không chứa \(x\) trong khai triển \(f\left( x \right)\) là: \(C_7^4 = 35\). Chọn A.