Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển của nhị thức \({\left( {a + 2b} \right)^5}\). A.\(10\) B.\(40{a^3}{b^2}\) C.\(40\) D.\(10{a^3}{b^2}\)
Đáp án đúng: C Giải chi tiết:Ta có: \({\left( {a + 2b} \right)^5} = \sum\limits_{k = 0}^5 {C_5^k{a^k}{{\left( {2b} \right)}^{5 - k}}} = \sum\limits_{k = 0}^5 {C_5^k{a^k}{2^{5 - k}}.{b^{5 - k}}} \) Hệ số của \({a^3}{b^2}\) ứng với \(\left\{ \begin{array}{l}k = 3\\5 - k = 2\end{array} \right. \Leftrightarrow k = 3 \Rightarrow \) Hệ số của đơn thức \({a^3}{b^2}\) là \({2^2}C_5^3 = 40\). Chọn C.